We are Living on the Edge: Managing Extreme‑Severity Claims Using Extreme Value Theory

    João Vinícius França Carvalho   Bio
    ; Luiz Henrique Alves Oliveira   Bio


Download data is not yet available.


Claims with high severity and low probability constitute a high risk for the insurance market. One tool to deal with this kind of event is the Extreme Value Theory (EVT). The main goal of this article is to apply the EVT to Actuarial Science using a different estimator for parameters, allowing the calculation of pure reinsurance premiums and the choice for the retention limit for insurance companies. The execution was split into two parts: (i) comparing the estimators through simulations, and; (ii) using data from 5 SUSEP lines of business with different natures, intending to estimate some extreme value statistics. In simulation studies, the Pickands estimator was very promising, but the limited amount of data resulted in a great variance when applied to real cases. Lastly, we concluded that the EVT is a powerful tool for insurance, capturing the behavior of extreme clams amount better than traditional models.

Keyword : Insurance, Extreme values, Expected shortfall, High quantiles estimation Seguros, Valores extremos, Expected shortfall, Estimação em altos quantis

How to Cite
Carvalho, J. V. F., & Oliveira, L. H. A. (2023). We are Living on the Edge: Managing Extreme‑Severity Claims Using Extreme Value Theory. Brazilian Business Review, 21(3).


Aon. (2018). Weather, Climate & Catastrophe Insight - 2018 Annual Report. http://thoughtleadership. Beirlant, J., Maribe, G., & Verster, A. (2018). Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications. Insurance: Mathematics and Economics, 78, 114–122. Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial Mathematics (2nd ed.). The Society of Actuaries. Brazauskas, V., & Serfling, R. (2000). Robust and Efficient Estimation of the Tail Index of a Single- Parameter Pareto Distribution. North American Actuarial Journal, 4(4), 12–27. 0.1080/10920277.2000.10595935 Caeiro, F., Henriques‐Rodrigues, L., Gomes, M. I., & Cabral, I. (2020). Minimum‐variance reducedbias estimation of the extreme value index: A theoretical and empirical study. Computational and Mathematical Methods, 2(4), 1-17. Carvalho, J. V. F., & Cardoso, L. (2021). Os Impactos da Rentabilização do Estoque de Capital Sobre a Probabilidade de Ruína e o Capital de Solvência para Seguradoras. Revista Evidenciação Contábil & Finanças, 9(3), 9–29. Chen, Y., & Yuan, Z. (2017). A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks. Insurance: Mathematics and Economics, 73, 75–81. insmatheco.2017.01.005 Cummins, J. D., & Weiss, M. A. (2014). Systemic risk and the U.S. insurance sector. Journal of Risk and Insurance, 81(3), 489-528. Damasceno, A. T., & Carvalho, J. V. F. (2021). Assessment of the new investment limits for assets of Social Security Regimes for Public Servants established by Resolution CMN 3,922/2010. Revista Brasileira de Gestao de Negocios, 23(4), 728–743. Daníelsson, J., & Morimoto, Y. (2000). Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market. Monetary and Economic Studies, 18(2), 25–48. Dekkers, A. L. M., Einmahl, J. H. J., & Haan, L. (1989). A Moment Estimator for the Index of an Extreme-Value Distribution. The Annals of Statistics, 17(4), 1833–1855. aos/1176347397 Dempster, M. A. H., Germano, M., Medova, E. A., & Villaverde, M. (2003). Global Asset Liability Management. British Actuarial Journal, 9(1), 137–195. Dietz, S., & Walker, O. (2019). Ambiguity and Insurance: Capital Requirements and Premiums. Journal of Risk and Insurance, 86(1), 213–235. Drees, H. (1995). Refined Pickands Estimators of the Extreme Value Index. The Annals of Statistics, 23(6), 2059–2080. Euphasio Junior, J. W., & Carvalho, J. V. F. (2022). Reinsurance and Solvency Capital: Mitigating Insurance Companies’ Ruin Probability. Revista de Administração Contemporânea, 26(1), e200191. Gatto, R. (2020). The stability of the probability of ruin. Stochastic Models, 36(1), 112–133. https:// Gnedenko, B. (1943). Sur La Distribution Limite Du Terme Maximum D ’ Une Serie Aleatoire. Annals of Mathematics, 44(3), 423–453. Haan, L. (1990). Fighting the arch-enemy with mathematics. Statistica Neerlandica, 44(2), 45–68. Haan, L., Mercadier, C., & Zhou, C. (2016). Adapting extreme value statistics to financial time series: Dealing with bias and serial dependence. Finance Stoch, 20, 321–354. s00780-015-0287-6 Haeusler, E., & Teugels, J. L. (1985). On Asymptotic Normality of Hill’s Estimator for the Exponent of Regular Variation. The Annals of Statistics, 13(2), 743–756. Hall, P., & Welsh, A. H. (1984). Best Attainable Rates of Convergence for Estimates of Parameters of Regular Variation. The Annals of Statistics, 12(3), 1079–1084. aos/1176346723 Hill, B. M. (1975). A Simple General Approach to Inference About the Tail of a Distribution. The Annals of Statistics, 3(5), 1163–1174. Huang, F., Maller, R., & Ning, X. (2020). Modelling life tables with advanced ages: An extreme value theory approach. Insurance: Mathematics and Economics, 93, 95–115. insmatheco.2020.04.004 Iglesias, E. M. (2012). An analysis of extreme movements of exchange rates of the main currencies traded in the Foreign Exchange market An analysis of extreme movements of exchange rates of the main currencies traded in the Foreign Exchange market. Applied Economics, 44(35),4631–4637. Kasumo, C., Kasozi, J., & Kuznetsov, D. (2018). On Minimizing the Ultimate Ruin Probability of an Insurer by Reinsurance. Hindawi Journal of Applied Mathematics, 2018(19), 1-11. https://doi. org/10.1155/2018/9180780 Landes, X. (2015). How Fair Is Actuarial Fairness? Journal of Business Ethics, 128(3), 519–533. https:// McNeil, A. J. (1997). Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory. ASTIN Bulletin, 27(1), 117–137. Melo, E. F. L. (2006). Uma Aplicação da Teoria de Valores Extremos para Avaliação do Risco de Contratos de Resseguro. Revista Brasileira de Risco e Seguro, 2(3), 1–22. Mendes-Da-Silva, W., Lucas, E. C., & Carvalho, J. V. F. (2021). Flood insurance: The propensity and attitudes of informed people with disabilities towards risk. Journal of Environmental Management, 294, 113032. Pickands, J. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1), 119–131. Ramsden, L., & Papaioannou, A. D. (2019). Ruin probabilities under capital constraints. Insurance: Mathematics and Economics, 88(1), 273–282. Resnick, S. I. (1971). Tail equivalence and its applications. Journal of Applied Probability, 8(1), 136–156. Resnick, S. I. (2014). Discussion of the danish data on large fire insurance losses. ASTIN Bulletin, 27(1), 139–151. Stupfler, G., & Yang, F. (2018). Analyzing and predicting cat bond premiums: a financial loss premium principle and extreme value modeling. ASTIN Bulletin, 48(1), 375–411. https://doi. org/10.1017/asb.2017.32 Tanaka, A. D., & Carvalho, J. V. F. (2019). Estimação da estrutura de dependências entre classes de seguro por meio de cópulas. Revista Brasileira de Risco e Seguro, 15(25), 1–34. Taylor, P., & Falk, M. (1994). Efficiency of convex combinations of pickands estimator of the extreme value index. Nonparametric Statistics, 4(2), 133–147. Terra Brasis. (2017). Terra Report: Relatório do Mercado Brasileiro de Resseguros. https://www.australre. com/wp-content/uploads/2021/03/Terra-Report-Brasil-201706-Port-v7.pdf Vaughan, E. J., & Vaughan, T. M. (2013). Fundamentals of Risk and Insurance. John Wiley & Sons. Wüthrich, M. V. (2015). From ruin theory to solvency in non-life insurance. Scandinavian Actuarial Journal, 2015(6), 516–526. Yun, S. (2000). A class of Pickands-type estimators for the extreme value index. Journal of Statistical Planning and Inference, 83(1), 113–124.

Send mail to Author

Send Cancel