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ABSTRACT: This paper explores three models to estimate volatility: exponential 
weighted moving average (EWMA), generalized autoregressive conditional 
heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by 
these models can be used to measure the market risk of a portfolio of assets, called 
Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence 
interval for the continuous returns under analysis. For empirical assessment of these 
models, we used a sample based on Petrobras stock prices to specify the GARCH 
and SV models. Additionally, we adjusted these models by violation backtesting for 
one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility 
models (suggested by RiskMetrics). The results suggest that VaR calculated 
considering EWMA was less violated than when considering SV and GARCH for a 
1500-observation window. Hence, for our sample, the model suggested by 
RiskMetrics (1999), which uses exponential smoothing and is easier to implement, 
did not produce inferior violation test results when compared to more sophisticated 
tests such as SV and GARCH.     
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1. INTRODUCTION

The main objective of volatility models is to provide a measure that can be used in 
managing financial risks, helping in the selection of portfolio assets and in derivatives 
pricing.  
The value-at-risk (VaR) models used in risk management by financial institutions, as a 

measure of the risk of financial loss for a determined confidence interval and time horizon, 
need a volatility estimate for their formulation. Volatility forecasting models, such as GARCH 
and stochastic volatility, are proposed as alternatives for this estimation. 
In this sense, the present paper suggests the use of autoregressive conditional 
heteroskedasticity and stochastic volatility models to predict the volatility used in VaR 
measures. 

We specify the models and their estimated parameters using an extended sample of 
continuous returns of preferred Petrobras shares. Additionally, we use a violation test to 
compare the VaR limits of the models obtained by GARCH, stochastic volatility (SV) and that 
suggested by RiskMetrics (1999) for the marked-to-the-market returns our portfolio of 
Petrobras shares.  

The paper is organized in eight sections plus appendixes. The second section presents 
the VaR measure and the adjustment of the volatility models to this measure. The third section 
introduces the main concepts of the GARCH model, and the fourth section briefly presents the 
stochastic volatility model. The fifth and sixth sections present the data used and specify the 
volatility models. The seventh section then details the backtesting to compare the efficiency of 
the volatility prediction models used in calculating the VaR. The eighth section presents some 
final conclusions, and the appendixes contain more detailed results of each model’s 
estimation.  

2. THE VALUE AT RISK (VaR) OF A PORTFOLIO
Value at Risk (VaR) seeks to measure the market risks in terms of asset price volatility.

VaR, as defined by Jorion (2001, p.19), synthesizes the greatest (or worst) loss expected from 
a portfolio, within determined time periods and confidence intervals. 
Formally, VaR is defined for a long position in an asset S over a time horizon j, with 
probability p (0<p<1): 

p = P(∆Pj ≤VaR) = Fj(VaR) 
(0.1) 

where ∆Pj represents the gain or loss of position P, given by ∆Pj = Pt+j  – Pt and Fj(.) is the 
accumulated distribution function (a.d.f.) of the random variable ∆Pj.    

The VaR is given in monetary units and represents the p-quantile of the distribution 
Fj(.). According to Moretin (2004, p.179), this quantile is estimated from an empirical 
distribution of the returns. The VaR calculated in (2.1) has a negative value, because someone 
with a long position suffers a loss if ∆Pj<0. The amount in monetary units in calculating the 
VaR is obtained by multiplying the value of the financial position by the VaR of the return.  
Calculation of the VaR can be simplified if it is possible to suppose a normal distribution of 
the continuous returns (yt), or log-returns, of the assets composing the portfolio. Starting from 
the estimates of the distribution parameters, such as the standard deviation of the returns, the 
expected portfolio loss can be determined as follows: 

F 
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where y* is the critical return value for calculating the VaR for time horizon j. 

The following figure illustrates the VaR calculation at a 5% confidence interval for a 
supposedly normal distribution of returns, with mean µ  and standard deviation σ : 

Figure 1: VaR with normal distribution 

Source: Prepared by the authors. 

In this way it is possible to calculate the VaR from the accumulated probability density 
function of a standard normal distribution. However, care must be taken to convert the log-
return of the VaR into a discrete percentage variation i, in the following manner: 

1* −= yei                  (0.3) 
The absolute VaR suggested by RiskMetrics, in Longerstaey and More (1995), starts 

from the premise that the conditional distribution of the returns is normal and has mean zero 
and variance 2

1+tσ , with ( )( )2
1,0~| ++ − ttjt tjNIy σ  and ( ) 2

1
2

++ −= tjt tj σσ .

To calculate the VaR it is necessary to have an estimate of the volatility of the asset’s 
log-returns for the analysis horizon. In this study, we evaluate three different approaches of 
estimating the volatility to calculate the VaR. The first approach, which is based on the model 
proposed by RiskMetrics, the most common method among VaR users, utilizes exponential 
smoothing with a decay factor λ  of 0.94 and assumes the returns are normally distributed. 
This approach can be considered a particular case of the generalized autoregressive 
conditional heteroskedasticity (GARCH) model, and according to Jorion (2001, p. 175), it is 
represented by the following equation: 

( ) 2
11 1 −− −+= ttt yhh λλ      (0.4)

The second method analyzed uses the concept of conditional volatility, modeled 
through a combination of the autoregressive moving average (ARMA) plus Gaussian 
GARCH, and the third performs the volatility prediction through the stochastic volatility (SV) 
model. 

Berkowitz and O’Brien (2002) evaluated VaR models for a sample of six banks using 
historic series. They compared the models employed by the banks with the VaR calculated 
based on an ARMA(1,1) plus GARCH(1,1) model, assuming a normal distribution. They 
found by backtesting that the banks’ VaR, although more conservative, did not follow the 
profit and loss (P&L) volatility of their portfolios and was outperformed by the GARCH 
model in terms of violation of the VaR limits. Jorion (2001, p. 170) states that the models for 
calculating VaR that use GARCH are more precise, principally in cases where there are 
volatility clusters. 

µ  σµ 65,1* −=y  

5% 95% 
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In this study, we use the conditional volatility model in its reduced form to compute 
the VaR, as done in the work of Berkowitz and O’Brien (2002), as originally proposed by 
Zangari (1997). The model we use is composed of an autoregressive component of the returns, 
represented by an AR(1) model1: 

ttt yy εφφ ++= −110 , (0.5) 

combined with a GARCH(1,1) conditional volatility model 

11
2

110 −− ++= ttt hh βεαα . (0.6) 

To calculate the VaR with the AR(1) plus GARCH(1,1) conditional volatility model, 
we use the conditional mean and variance one step ahead, estimated by the model: 

( ) ( )( )1ˆ,1ˆ~| 2
1 tttt yNIy σ+ (0.7) 

In this context, supposing a VaR of 5% for one day (with p = 5% and z =1.65), it 
should be calculated in the following way: 

( ) ( )1ˆ65,11ˆ 2
%5 ttyVaR σ−= (0.8) 

In following sections we describe the models used to predict volatility for calculating the 
VaR. 

3. GARCH MODEL
Engle (1982) shows that it is possible to model the mean and variance simultaneously.

For this, he uses the concept of conditional variance, which can be modeled as an 
autoregressive term: 

tqtpttt v+++++= −+−−
2
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2

22

2

110

2 ˆˆˆˆ εαεαεααε L
,           (0.1) 

where tε̂  is the estimated residual of the model yt = a0 + Φ yt-1 + εt and vt is the white noise. 

The representation of the above equation is the base for the autoregressive conditional 
heteroskedasticity (ARCH) model. Nevertheless, in terms of estimation of εt , it is not the most 
suitable, given that to carry out the joint estimation of {yt} and the conditional variance, the 
maximum likelihood technique is used. Hence, a more suitable specification is to treat vt as a 
multiplicative term. Hence, the equation can be written as follows: 

∑
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i
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1

2

0 ε̂ααε ,  (0.2) 

where α0 and αi are constant parameters such that α0>0, αi≥0 and 0≤∑αi≤1, for the variance 

given by ∑
=

−=
q

i
i

1
0

2 1/ αασ ε
 not to be negative and/or explosive. 

Bollerslev (1986) expanded the model given by (3.2) to permit the conditional 
variance to be modeled as an autoregressive moving average (ARMA) model. The generalized 
autoregressive conditional heteroskedasticity (GARCH) model is “a generalized ARCH model 
in which the conditional variance of n at instant t depends not only on the past squared 
perturbations, but also the past conditional variances.” (Gujarati, 2005, p.440). The most 
common typification is the GARCH(1,1) model, where the first number refers to the lag of the 
autoregressive terms and the second refers to the number of lags in the model’s moving 
average component. GARCH (p,q) models are specified as: 

ttt hv=ε (0.3) 

1 The identification of the ARMA (p,q) model used in this study followed the method presented by Box and 
Jenkins (1970). 
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The constraints of this model are: α0>0, αi≥0, βi≥0 and 0≤∑αi+∑βi≤1. 

It is interesting to note that GARCH models are conditionally heteroskedastic, but 
have a constant unconditional variance.  

To specify GARCH models, it is necessary to assume the conditional distribution of 
the error terms εt. The literature usually employs the following distributions: i) normal; ii) 
Student’s t; and/or iii) generalized errors.  

For a given distribution, the model is estimated by the maximum likelihood method. 
For example, for a GARCH (1,1) model, with T observations, assuming a normal distribution 
of the error terms, the log-likelihood is given by: 
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Assuming a Student’s t distribution implies: 
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where v is the number of degrees of freedom and Γ(x) is the usual Gamma function, i.e., 

∫
∞

−−=Γ
0

1)( dyeyx yx . 

In this paper we use the estimations of the GARCH model considering the maximum 
likelihood based on the normal distribution2. 

4. STOCHASTIC VOLATILITY (SV) MODEL
According to Morettin (2004, p.164) “the models of the ARCH family suppose that the

conditional variance depends on the past returns.” The stochastic volatility (MV) model, first 
proposed by Taylor (1986), does not make this assumption. This model’s premise is that the 
present volatility depends on its past values, but that it is independent of the past returns. 
Considering the price of the financial asset at t (St), the discrete time stochastic volatility 
model, presented by Harvey, Ruiz and Shephard (1994), can be written as: 

yt = σt εt,      t = 1 ,....., T, (0.1) 

where yt represents the continuous return of the asset in period t, calculated by yt = ln(St / St-1), 
and logσ2 follows an AR(1) process. It is assumed that εt is a series of independent and 
identically distributed (iid) random terms. Usually εt is specified to have a standard 
distribution, so its variance σε

2
 is unknown. Thus, for a normal distribution σε

2
 is equal to one, 

while for a t, distribution with v degrees of freedom, it is v/(v-2). According to the convention 
in the literature, one can write: 

yt = σ εt e
0,5ht (0.2) 

2 We also tested the models based on the Student t distribution. The differences in the results were not significant. 
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where ht is the logarithmic volatility at t and σ is a constant scale factor, for which reason there 
is no need for a constant in the first-order stationary autoregressive term, according to the 
following equation: 

ht+1 = Φ ht + ηt , ηt ~iid (0,σ2
η), |Φ|< 1 (0.3) 

If εt has finite variance, the variance of yt is given by: 

( ) ( )222 2
heyVar t

σ
εσσ=  , (0.4) 

where σh
2
 is the variance of ht. 

One of the advantages of the discrete time stochastic volatility model is that it is 
analogous to the continuous time models utilized in articles on options pricing, such as in Hull 
and White (1987). The basic econometric properties of stochastic volatility models are 
discussed in Taylor (1986, 1994), Shephard (1996), Ghysels, Harvey and Renault (1996) and 
Jacquier, Polson and Rossi (1994). One of the key characteristics of this model is that it can be 
linearized by applying the logarithm squared of the observations in (4.2): 

 log y2
t = ht + log εt

 2 + log σ 2    (0.5) 
Afterward, the term ( )2log tE ε  is added to and subtracted from expression (4.5), to 

obtain: 
log y2

t = ht +  log εt
 2 - E(log εt

 2) + log σ 2+ E(log εt
 2) (0.6) 

The representation of this expression can be written as: 

ttt hky ξ++=2log ,  (0.7) 

where к= log σ 2+ ( )2log tE ε  and ξt = log εt
 2 - ( )2log tE ε . 

As shown in Harvey, Ruiz and Shephard (1994), the state space form given by 
equations (4.3) and (4.7) supply the basis for estimating the model’s parameters by applying a 
Kalman filter. Harvey, Ruiz and Shephard (1994) estimate the parameters θ = (Φ, σ2

η) ∈ (-1,1) 
by maximizing the following quasi-likelihood function: 

( ) ∑ ∑
= =
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tttQ FvF
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2

2
1

log
2
1

2log
2

|log πθ ,  (0.8)

where y = (y1, y2,...), υt is the projection of the error one step ahead for the best estimator of 
log y2

t and Ft is the corresponding quadratic error. 

The estimation carried out by the quasi-maximum likelihood method is consistent and 
asymptotically follows a normal distribution. In the next section, we detail the characteristics 
of the sample, with market data on the shares, used to apply the models presented. 

5. DESCRIPTION OF THE DATA
To apply the volatility models to the calculation of the value at risk (VaR), we chose the

preferred shares of Petrobras (Petr4), given their liquidity and the number of trading days with 
an ample window of data available. The data are daily (trading days) and cover the period 
from January 2, 1995 to January 12, 2006, for a total of 2729 observations. 
Alexander (2005, p. 90) reports that “in the GARCH model there is a dichotomy between 
whether to have sufficient data for the estimates of the parameters to be stable, according to 
the moving data window, or to have excessive data, so that the predictions do not 
appropriately reflect current market conditions.” Our sample represents a window of eleven 
years for applying the models, because we prioritized the stability of the parameters. Figure 2 
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shows the behavior of the selected series of returns, highlighting events that caused high-
volatility clusters. 
[Mexican crisis / Asian crisis / Russian crisis / Maximum variance / September 11th / 
Brazilian presidential elections] 

Figure 2: Continuous Returns of Petrobras PN 
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We initially ran tests to identify the existence or not of a unit root and conditional 
heteroskedasticity in the series, for adequate application of the models. According to the tests 
conducted (augmented Dickey-Fuller, Phillips-Perron, KPSS and correlogram of squared 
returns), it can be said that the series is stationary and heteroskedastic, which qualifies it for 
application of the models analyzed (see the appendixes). 
SPECIFICATION OF THE MODELS 
In this section we specify the GARCH and SV models using the data sample mentioned 
above. We specified the combined AR(1) and GARCH (1,1) model with the help of the 
EVIEWS program. The AR(1) specified was:  

( )01992,0

132674,0 1 ttt yy ε+= − (0.1) 

We followed the procedures below to estimate the complete GARCH model: 

- We estimated the AR(1) model following the method suggested by Box and Jenkins
(1970);

- We verified the lag of the GARCH model by analyzing the autocorrelation and partial
autocorrelation functions of the squared residuals, resulting in specification of a
GARCH (1,1) model due to its parsimony and because models with more lags did not
converge satisfactorily;

- We applied Student’s t test to the estimated parameters, rejecting the null hypothesis of
equality to zero;

( ) ( ) ( )01115,000813,00000038,0

83784,012972,00000247,0 1
2

1 −− ++= ttt hh ε
(0.2) 
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- The model’s constraints were satisfied, since the estimates of the parameters were
positive and the sum less than 1;

- We verified the absence of autocorrelation in the autocorrelation function by the Ljung
Box test;

- In the squared residuals tests, we verified the existence of autocorrelation (Ljung-Box),
and by the LM test we rejected the null hypothesis of the absence of autocorrelation in
the squared residuals;

- Using the Jacque-Bera normality test of the standardized residuals, we could verify in
the histogram that the distribution of the residuals is leptokurtic, rejecting the
hypothesis of normality.

According to these tests, the GARCH (1,1) model is suitable to estimate the conditional 
volatility, and is thus used to calculate the VaR. The figure below contains the static 
prediction one step ahead of the conditional variance based on the model specified. 

Figure 3: Prediction of the conditional variance one step ahead 
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Source: Prepared by the authors. 

We specified the stochastic volatility (SV) model with the help of the STAMP 
program. A practical problem arises in estimating this model, namely the existence of zeros in 
the data series. Since the calculations are carried out in logarithms, the values of the returns 
cannot be nil. We employed the following transformation, suggested by Breidt and Carriquiry 
(1994), to get around this problem: 

)/()log(log 222222

ytyytt csycscsyy +−+≅ , t = 1,2,....,T, (0.3) 

where 2

ys  is the sample variance of y and c is a small number (in STAMP it is 0.02). 

After carrying out this transformation, the model is estimated from the quasi-
maximum likelihood method via a Kalman filter, resulting in the following equations: 
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 log y2t = к+ht +ξt  � log y2
t = -8,5769 + ht +ξt 

 ht+1 = Φ ht + ηt     � ht+1= 0,986323ht + ηt

The model converges very strongly in 14 iterations, with the estimated standard 
deviation of ξt equal to 1.6888 and that of ηt equal to 0.13382. It is important to stress that the 
Ljung-Box test applied to the residuals estimated by the model suggests there is no 
autocorrelation. The value obtained in the autoregressive component, of 0.9863, is very high 
and suggests there is an adjustment equivalence between the GARCH(1,1) and SV models. 
Figure 4 shows the SV model for the Petrobras stock returns. Just as in the GARCH model, 
there are volatility clusters coinciding with certain events, but the general volatility level of 
the SV model appears more stable.  

Figure 4: SV model for the Petrobras returns 
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Source: Prepared by the authors. 

Thus, for the case under analysis, either the GARCH (1,1) or the SV model are 
adequate to estimate the VaR. In this sense, in the next section we apply backtesting to 
compare the VaR based on the RiskMetrics (1999) methodology, which is widely used in the 
market, with the VaR based on the GARCH and SV methods.   

6. BACKTESTING
According to the RiskMetrics (1999) manual, backtesting compares the results 

obtained with the measures generated by the model, to measure the efficiency of the model 
used by financial institutions. 

One of the methods used to evaluate the efficiency of models through backtesting is to 
test for violations of the VaR limits, given by the number of excesses outside the confidence 
interval.  

This test uses the portfolio’s value marked to the market, counting the number of times 
the portfolio’s returns exceeded the confidence interval stipulated for the VaR. The number 
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violations can be differentiated into: upper limits, when the return exceeds the confidence 
interval on the right side of the tail; and lower limits, when the return is more negative than 
the critical return determined by the VaR. In this work we apply the violation test for the 
lower limits, using the marked-to-the-market returns of the Petrobras shares for a window of 
1500 observations. In this form, it is possible to compare the efficiency of the GARCH and 
RiskMetrics models.  

The next figure shows the Petrobras returns and the VaR calculated by the RiskMetrics 
model, with volatility estimated by the exponential weighted moving average (EWMA), with 
a decay factor λ =0.94. It can be seen that at the moments of greatest volatility, the Petrobras 
returns exceeded the lower VaR limits. 

Figure 5: VaR calculated by RiskMetrics/EWMA 
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 Source: Prepared by the authors. 

The next figure presents the VaR calculated by the GARCH (1,1) model and the limit 
violations. 

Figure 6 : VaR calculated by GARCH(1,1) 
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      Source: Prepared by the authors. 

Figure 7 presents the VaR calculated by the SV model and its respective limit violations. 
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Figure 7:  VaR calculated by SV 
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The results of the limits-violation testing show that in 4.54% of the observations, the 
Petrobras returns exceed the VaR limits calculated with the GARCH model, while the 
corresponding percentages for the SV model were 3.87% and for the EWMA model only 
3.20%. It is important to point out that these results are only indicative for a sample, and by 
comparing them it is not possible to conclude which is more efficient. But it is possible to 
infer that the VaR calculated by the EWMA method, through the model proposed by 
RiskMetrics, suffered fewer violations of the limits than the VaR calculated with the volatility 
forecast by the GARCH (1,1) and SV methods. Nevertheless, it should be remembered that all 
the models tested remained within the 5% significance level used in the VaR. 

7. FINAL CONSIDERATIONS
This article analyzed three models used to estimate volatility: exponential weighted 

moving average (EWMA), generalized autoregressive conditional heteroskedasticity 
(GARCH) and stochastic volatility (SV). The volatility estimated by these models is the basis 
for calculating the VaR, a metric widely used by financial institutions and companies with 
exposures, to evaluate the risk of probable losses in their portfolios caused by asset price 
variations. The VaR measure depends on the volatility, the time horizon and the confidence 
interval for the continuous returns calculated through the logarithmic differences of the asset 
prices. 

For empirical analysis, we used a sample of prices of preferred Petrobras shares to 
specify the generalized autoregressive conditional heteroskedasticity and the stochastic 
volatility models. Both the GARCH and the SV models proved adequate to model the 
volatility. Additionally, we carried out limits-violation backtesting for a VaR of 5% calculated 
one step ahead, to compare the efficiency of the GARCH and SV models with that proposed 
by RiskMetrics (EWMA). The results of these tests were not conclusive, but we verified that 
the VaR calculated by EWMA suffered fewer violations that those calculated by the GARCH 
and SV models, for a window of 1500 observations. The model suggested by RiskMetrics 
(1999), which uses the volatility calculated by exponential smoothing, besides being favored 
by the simplicity of its implementation, did not provide inferior results in the violation test in 
comparison with the more sophisticated volatility estimation models. 

For subsequent works, we suggest the use of portfolios with more than one asset, or 
verification of the models for longer projection horizons than one day. 
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APPENDIXES 

i) Autocorrelation of the series

The correlogram of the stock’s returns is presented below: 

From the analysis of the ACF and PACF, it is not very clear which model the behavior of these functions 
represents. However, a significant reduction can be perceived both in the ACF and PACF in the series’ first lag. 
In this context, the AR(1), MA(1) and ARMA(1,1) are estimated and the respective information criteria are 
analyzed to select the model to be estimated with GARCH: 

ARMA(1,1) Model 
Variable Coefficient Std. Error t-Statistic Prob.  

AR(1) -0.058242 0.153047 -0.380551 0.7036 
MA(1) 0.179051 0.150903 1.186528 0.2355 

R-squared 0.012326  Mean dependent var 0.001218 
Adjusted R-squared 0.011964 S.D. dependent var 0.028971 
S.E. of regression 0.028797  Akaike info criterion -4.256375
Sum squared resid 2.260544  Schwarz criterion -4.252041
Log likelihood 5807.696  Durbin-Watson stat 2.003717

Inverted AR Roots  -.06 
Inverted MA Roots  -.18 

AR (1) Model 
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Variable Coefficient Std. Error t-Statistic Prob.  

AR(1) 0.114847 0.019009 6.041861 0.0000 

R-squared 0.011464  Mean dependent var 0.001218 
Adjusted R-squared 0.011464 S.D. dependent var 0.028971 
S.E. of regression 0.028804  Akaike info criterion -4.256236
Sum squared resid 2.262518  Schwarz criterion -4.254069
Log likelihood 5806.505  Durbin-Watson stat 1.989847

Inverted AR Roots  .11 

MA (1) Model 
Variable Coefficient Std. Error t-Statistic Prob.  

MA(1) 0.122887 0.019000 6.467663 0.0000 

R-squared 0.012546  Mean dependent var 0.001196 
Adjusted R-squared 0.012546 S.D. dependent var 0.028988 
S.E. of regression 0.028806  Akaike info criterion -4.256124
Sum squared resid 2.263601  Schwarz criterion -4.253957
Log likelihood 5808.481  Durbin-Watson stat 2.004299

Inverted MA Roots  -.12 

Based on the significance of the estimated coefficients, as well as the information criteria of the models, we chose 
to use the AR(1) specification for the series. 

ii) Analysis of the series for adjustment of a GARCH model
The correlogram of the stock’s squared returns is presented below:
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The squared return series presents strong autocorrelation, which provides indications that the generalized 
autoregressive conditional heteroskedasticity model can be used for the best modeling of the series. The graph of 
the squared return series shows characteristic clusters of the GARCH model: 
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.05

500 1000 1500 2000 2500

PETR2

iii) Unit root tests of the series:

ADF Test – Model with intercept and trend 
Null Hypothesis: PETR has a unit root 
Exogenous: Constant, Linear Trend 
Lag Length: 2 (Automatic based on SIC, MAXLAG=27) 

t-Statistic  Prob.* 

Augmented Dickey-Fuller test statistic -31.79295  0.0000 

Test critical values: 1% level -3.961409
5% level -3.411456
10% level -3.127584

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(PETR) 
Method: Least Squares 
Sample (adjusted): 4 2729 
Included observations: 2726 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob. 

PETR(-1) -0.988080 0.031079 -31.79295 0.0000 
D(PETR(-1)) 0.103309 0.025471 4.055912 0.0001 
D(PETR(-2)) 0.059656 0.019120 3.120107 0.0018 

C 0.000799 0.001102 0.725248 0.4684 
@TREND(1) 3.02E-07 6.99E-07 0.432184 0.6656 

R-squared 0.447128  Mean dependent var -8.18E-07
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Adjusted R-squared 0.446315 S.D. dependent var 0.038593 
S.E. of regression 0.028717  Akaike info criterion -4.260837
Sum squared resid 2.243884  Schwarz criterion -4.249996
Log likelihood 5812.521 F-statistic 550.1436
Durbin-Watson stat 1.999082  Prob(F-statistic) 0.000000

Conclusion: By the augmented Dickey-Fuller (ADF) unit root test, the null hypothesis that there is a unit 
root in the stock’s return series cannot be accepted at 1%, 5% and 10% significance. The conclusions are 
the same for the model without intercept and trend and with intercept.  

PP Test – Model with intercept and trend 
Null Hypothesis: PETR has a unit root 
Exogenous: Constant, Linear Trend 
Bandwidth: 11 (Newey-West using Bartlett kernel) 

Adj. t-Stat  Prob.* 

Phillips-Perron test statistic -46.33250  0.0000 

Test critical values: 1% level -3.961407
5% level -3.411454
10% level -3.127583

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)  0.000828 
HAC corrected variance (Bartlett kernel)  0.000664 

Phillips-Perron Test Equation 
Dependent Variable: D(PETR) 
Method: Least Squares 
Sample (adjusted): 2 2729 
Included observations: 2728 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob. 

PETR(-1) -0.886767 0.019019 -46.62638 0.0000 
C 0.000693 0.001103 0.628217 0.5299 

@TREND(1) 2.86E-07 7.00E-07 0.408488 0.6829 

R-squared 0.443767  Mean dependent var 2.46E-05 
Adjusted R-squared 0.443358 S.D. dependent var 0.038593 
S.E. of regression 0.028793  Akaike info criterion -4.256243
Sum squared resid 2.259185  Schwarz criterion -4.249743
Log likelihood 5808.516 F-statistic 1087.012
Durbin-Watson stat 1.989712  Prob(F-statistic) 0.000000

Conclusion: By the Phillips-Perron (PP) unit root test, the null hypothesis that there is a unit root in the 
stock’s return series cannot be accepted at 1%, 5% and 10% significance. The conclusions are the same 
for the model without intercept and trend and with intercept.  



Galdi and Pereira 

 www.bbronline.com.br 

90 

iv) Stationarity test

In order to confirm the stationarity of the series, identified in the unit root tests, we applied the KPSS test, 
reported below: 

KPSS Test– Model with intercept and trend 
Null Hypothesis: PETR is stationary 
Exogenous: Constant, Linear Trend 
Bandwidth: 8 (Newey-West using Bartlett kernel) 

LM-Stat. 

Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.040889 

Asymptotic critical values*: 1% level  0.216000 
5% level  0.146000 
10% level  0.119000 

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction)  0.000840 
HAC corrected variance (Bartlett kernel)  0.000815 

KPSS Test Equation 
Dependent Variable: PETR 
Method: Least Squares 
Sample: 1 2729 
Included observations: 2729 

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.000683 0.001110 0.615912 0.5380 
@TREND(1) 3.76E-07 7.04E-07 0.533665 0.5936 

R-squared 0.000104  Mean dependent var 0.001196 
Adjusted R-squared -0.000262     S.D. dependent var 0.028988 
S.E. of regression 0.028992  Akaike info criterion -4.242870
Sum squared resid 2.292122  Schwarz criterion -4.238537
Log likelihood 5791.396 F-statistic 0.284798
Durbin-Watson stat 1.771974  Prob(F-statistic) 0.593617

Conclusion: By the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test, the null hypothesis that 
there is a unit root in the stock’s return series cannot be rejected at 1%, 5% and 10% significance. The 
conclusion is the same for the model with intercept. 

v) GARCH model
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Dependent Variable: PETR 
Method: ML - ARCH (Marquardt) 
Sample(adjusted): 2 2729 
Included observations: 2728 after adjusting endpoints 
Convergence achieved after 15 iterations 
Variance backcast: OFF 

Coefficient Std. Error z-Statistic Prob.  

AR(1) 0.132674 0.019922 6.659689 0.0000 

 Variance Equation 

C 2.47E-05 3.80E-06 6.517232 0.0000 
ARCH(1) 0.129720 0.008130 15.95504 0.0000 

GARCH(1) 0.837840 0.011150 75.13943 0.0000 

R-squared 0.011145  Mean dependent var 0.001218 
Adjusted R-squared 0.010056 S.D. dependent var 0.028971 
S.E. of regression 0.028825  Akaike info criterion -4.600617
Sum squared resid 2.263248  Schwarz criterion -4.591949
Log likelihood 6279.241  Durbin-Watson stat 2.023680

Inverted AR Roots  .13 

LM Test of the residuals 
ARCH Test: 

F-statistic 5.419314     Probability 0.004478 
Obs*R-squared 10.80755     Probability 0.004500 

Test Equation: 
Dependent Variable: STD_RESID^2 
Method: Least Squares 
Sample(adjusted): 4 2729 
Included observations: 2726 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.938109 0.045594 20.57535 0.0000 
STD_RESID^2(-1) 0.001367 0.019126 0.071459 0.9430 
STD_RESID^2(-2) 0.062959 0.019129 3.291311 0.0010 

R-squared 0.003965  Mean dependent var 1.002573 
Adjusted R-squared 0.003233 S.D. dependent var 1.917730 
S.E. of regression 1.914627  Akaike info criterion 4.138023 
Sum squared resid 9981.968  Schwarz criterion 4.144528 
Log likelihood -5637.125     F-statistic 5.419314 
Durbin-Watson stat 1.995807  Prob(F-statistic) 0.004478 

Normality Test of the Residuals 
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Series: Standardized Residuals
Sample 2 2729
Observations 2728

Mean   0.046257
Median   0.038150
Maximum  5.125893
Minimum -6.604058
Std. Dev.   1.000331
Skewness  -0.175047
Kurtosis   4.695533

Jarque-Bera  340.7044
Probability  0.000000



Galdi and Pereira 

 www.bbronline.com.br 

92 

vi) Stochastic volatility (SV) model

Complete results: 
Method of estimation is maximum likelihood 
The present sample is: 0 to 2728 

 MaxLik initialising... 
it  1  f=  -0.61823 e0=   0.00000 step=   1.00000 

 MaxLik iterating... 
it  4  f=  -0.56087 df=   0.00480 e1=   0.00347 e2=   0.11477 step=   1.00000 
it  9  f=  -0.55836 df=   0.00009 e1=   0.00021 e2=   0.03684 step=   1.00000 
it 14  f=  -0.55835 df=   0.00000 e1=   0.00000 e2=   0.00000 step=   0.00010 

Equation  1. 

SVpetr = Level + AR(1) + Irregular 

Estimation report 
Model with  3 parameters ( 1 restrictions). 
Parameter estimation sample is    0. 1 - 2728. 1. (T = 2729). 
Log-likelihood kernel is -0.5583489. 
Very strong convergence in  14 iterations. 
( likelihood cvg 1.789563e-015 
 gradient cvg   1.219025e-008 
 parameter cvg  1.623527e-010 ) 

Eq  1 : Diagnostic summary report. 

Estimation sample is    0. 1 - 2728. 1. (T = 2729, n = 2728). 
Log-Likelihood is -1523.73 (-2 LogL = 3047.47). 
Prediction error variance is 3.04931 

Summary statistics 
      SVpetr 

 Std.Error  1.7462 
 Normality     114.33 
 H(909)  0.93420 
 r( 1) -0.0018508
 r(39) 0.011165
 DW  1.9980 
 Q(39,37)  38.960 
 R^2  0.11195 

Eq  1 : Estimated variances of disturbances. 

Component       SVpetr (q-ratio) 
Irr  2.8520 ( 1.0000)  
Ar1  0.017907 ( 0.0063)  

Eq  1 : Estimated standard deviations of disturbances. 

Component       SVpetr (q-ratio) 
Irr  1.6888 ( 1.0000)  
Ar1  0.13382 ( 0.0792) 

Eq  1 : Estimated autoregressive coefficient. BBR, Braz. 

Bus. Rev. (Engl. ed., Online),

Vitória, v. 4, n. 1, Art. 5, p. 74 - 94, jan.-apr. 2007

    



Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility 

BBR, Braz. Bus. Rev. (Engl. ed., Online),
Vitória, v. 4, n. 1, Art. 5, p. 74 - 94, jan.-apr. 2007
 

 www.bbronline.com.br 

93 

The AR(1) rho coefficient is 0.986323. 
Eq  1 : Estimated coefficients of final state vector. 

Variable  Coefficient      R.m.s.e. t-value
Lvl   -8.5769       0.18600     -46.113  [ 0.0000]
Ar1   -0.76884       0.45764 

Normality test for Residual SVpetr 
Sample Size  2728 
Mean -0.053013
Std.Devn.      0.998594
Skewness              -0.257566
Excess Kurtosis       -0.580191
Minimum               -3.280796
Maximum      3.113678
Skewness  Chi^2(1)       30.163  [0.0000] 
Kurtosis  Chi^2(1)       38.263  [0.0000] 
Normal-BS Chi^2(2)   68.425  [0.0000] 
Normal-DH Chi^2(2)  114.33  [0.0000] 

Goodness-of-fit results for Residual SVpetr 
Prediction error variance (p.e.v)       3.049310 
Prediction error mean deviation (m.d)       2.511845 
Ratio p.e.v. / m.d in squares       0.938204 
Coefficient of determination  R2  0.111953 
... based on differences  RD2  0.466639 
Information criterion of Akaike    AIC  1.117114 
... of Schwartz (Bayes)  BIC  1.123613 

Serial correlation statistics for Residual SVpetr. 
Durbin-Watson test is 1.99805. 
Asymptotic deviation for correlation is 0.019146. 
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vii) Programming routine in VBA for calculation of the conditional variance of the exponential decay model:

Function ewma(lambda, As Range returns) 
i = 1 
lambda2 = 1 
ewma = 0 
Do While lambda2 > 0.00001 

ewma = ewma + returns (i, 1) ^ 2 * lambda2 
lambda2 = lambda2 * lambda 
i = i + 1 

Loop 
ewma = ewma * (1 - lambda) 

End Function 
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