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ABSTRACT: This paper explores three models to estimate volatility: exponential
weighted moving average (EWMA), generalized autoregressive conditional
heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by
these models can be used to measure the market risk of a portfolio of assets, called
Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence
interval for the continuous returns under analysis. For empirical assessment of these
models, we used a sample based on Petrobras stock prices to specify the GARCH
and SV models. Additionally, we adjusted these models by violation backtesting for
one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility
models (suggested by RiskMetrics). The results suggest that VaR calculated
considering EWMA was less violated than when considering SV and GARCH for a
1500-observation window. Hence, for our sample, the model suggested by
RiskMetrics (1999), which uses exponential smoothing and is easier to implement,
did not produce inferior violation test results when compared to more sophisticated
tests such as SV and GARCH.
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1. INTRODUCTION

The main objective of volatility models is to provide a measure that can be used in
managing financial risks, helping in the selection of portfolio assets and in derivatives
pricing.

The value-at-risk (VaR) models used in risk management by financial institutions, as a
measure of the risk of financial loss for a determined confidence interval and time horizon,
need a volatility estimate for their formulation. Volatility forecasting models, such as GARCH
and stochastic volatility, are proposed as alternatives for this estimation.

In this sense, the present paper suggests the use of autoregressive conditional
heteroskedasticity and stochastic volatility models to predict the volatility used in VaR
measures.

We specify the models and their estimated parameters using an extended sample of
continuous returns of preferred Petrobras shares. Additionally, we use a violation test to
compare the VaR limits of the models obtained by GARCH, stochastic volatility (SV) and that
suggested by RiskMetrics (1999) for the marked-to-the-market returns our portfolio of
Petrobras shares.

The paper is organized in eight sections plus appendixes. The second section presents
the VaR measure and the adjustment of the volatility models to this measure. The third section
introduces the main concepts of the GARCH model, and the fourth section briefly presents the
stochastic volatility model. The fifth and sixth sections present the data used and specify the
volatility models. The seventh section then details the backtesting to compare the efficiency of
the volatility prediction models used in calculating the VaR. The eighth section presents some
final conclusions, and the appendixes contain more detailed results of each model’s
estimation.

2. THE VALUE AT RISK (VaR) OF A PORTFOLIO
Value at Risk (VaR) seeks to measure the market risks in terms of asset price volatility.
VaR, as defined by Jorion (2001, p.19), synthesizes the greatest (or worst) loss expected from
a portfolio, within determined time periods and confidence intervals.
Formally, VaR is defined for a long position in an asset S over a time hdgtiaeith
probability p (0<p<1):
p = PUP; <VaR) = F(VaR)
(0.2)
whereAP; represents the gain or loss of positRngiven by4P; = Pw; — B and F(.) is the
accumulated distribution function (a.d.f.) of the random variable 4
The VaR is given in monetary units and represents the p-quantile of the distribution
Fi(.). According to Moretin (2004, p.179), this quantile is estimated from an empirical
distribution of the returns. The VaR calculated in (2.1) has a negative value, because someone
with a long position suffers a loss4P;<0. The amount in monetary units in calculating the
VaR is obtained by multiplying the value of the financial position by the VaR of the return.
Calculation of the VaR can be simplified if it is possible to suppose a normal distribution of
the continuous returngy), or log-returns, of the assets composing the portfolio. Starting from
the estimates of the distribution parameters, such as the standard deviation of the returns, the
expected portfolio loss can be determined as follows:
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p=|" f(y)dy. (y)=

(0.2)
where y* is the critical return value for calculating the VaR for time horizon |

The following figure illustrates the VaR calculation at a 5% confidence interval for a
supposedly normal distribution of returns, with mgarand standard deviation

Figure 1: VaR with normal distribution

v

Source: Prepared by the authors.

In this way it is possible to calculate the VaR from the accumulated probability density
function of a standard normal distribution. However, care must be taken to convert the log-
return of the VaR into a discrete percentage variationthe following manner:

i=e” -1 (0.3)

The absolute VaR suggested by RiskMetrics, in Longerstaey and More (1995), starts

from the premise that the conditional distribution of the returns is normal and has mean zero

and variances?,, with y,,, |1, ~N(0,(j -t)o?,) and 6?2, = (j ~t)aZ,.

t+]j

To calculate the VaR it is necessary to have an estimate of the volatility of the asset’s
log-returns for the analysis horizon. In this study, we evaluate three different approaches of
estimating the volatility to calculate the VaR. The first approach, which is based on the model
proposed by RiskMetrics, the most common method among VaR users, utilizes exponential
smoothing with a decay factot of 0.94 and assumes the returns are normally distributed.
This approach can be considered a particular case of the generalized autoregressive
conditional heteroskedasticity (GARCH) model, and according to Jorion (2001, p. 175), it is
represented by the following equation:

h =Ah, +(1_/1)yt2—1 (0.4)

The second method analyzed uses the concept of conditional volatility, modeled
through a combination of the autoregressive moving average (ARMA) plus Gaussian
GARCH, and the third performs the volatility prediction through the stochastic volatility (SV)
model.

Berkowitz and O’Brien (2002) evaluated VaR models for a sample of six banks using
historic series. They compared the models employed by the banks with the VaR calculated
based on an ARMA(1,1) plus GARCH(1,1) model, assuming a normal distribution. They
found by backtesting that the banks’ VaR, although more conservative, did not follow the
profit and loss (P&L) volatility of their portfolios and was outperformed by the GARCH
model in terms of violation of the VaR limits. Jorion (2001, p. 170) states that the models for
calculating VaR that use GARCH are more precise, principally in cases where there are

volatility clusters.

BBR, Braz. Bus. Rev. (Engl. ed., Online), www.bbronline.com.br
Vitoria, v. 4, n. 1, Art. 5, p. 74 - 94, jan.-apr. 2007



Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility 7

In this study, we use the conditional volatility model in its reduced form to compute
the VaR, as done in the work of Berkowitz and O'Brien (2002), as originally proposed by
Zangari (1997). The model we use is composed of an autoregressive component of the returns,
represented by an AR(1) model

YW =@t @AYt (0.5)
combined with a GARCH(1,1) conditional volatility model
h =a,+agl, +Bh,. (0.6)

To calculate the VaR with the AR(1) plus GARCH(1,1) conditional volatility model,
we use the conditional mean and variance one step ahead, estimated by the model:

Yin I l, ~ N(yt (l)’ OA-tZ (1)) (0.7)
In this context, supposing a VaR of 5% for one day (with p = 5% and z =1.65), it
should be calculated in the following way:

VaR,, = ¥, (1- 16557 () (0.8)
In following sections we describe the models used to predict volatility for calculating the
VaR.

3. GARCH MODEL

Engle (1982) shows that it is possible to model the mean and variance simultaneously.
For this, he uses the concept of conditional variance, which can be modeled as an
autoregressive term:

ny a2 a2 &2
E T FAELHAE, Tt A E L TV (0.1)

whereg, is the estimated residual of the moget ag+ @ yi.1+ erandv; is the white noise.

The representation of the above equation is the base for the autoregressive conditional
heteroskedasticity (ARCH) model. Nevertheless, in terms of estimatipnibis not the most
suitable, given that to carry out the joint estimationgf &nd the conditional variance, the
maximum likelihood technique is used. Hence, a more suitable specification is @ dseat
multiplicative term. Hence, the equation can be written as follows:

& :Vt\ a, +Zq:ai‘€tz—i ! (0.2)
i=1

wherea ando; are constant parameters such a0, 0,>0 and &) <1, for the variance
given byo—j =a, /1-2(]“ai not to be negative and/or explosive.
i=1

Bollerslev (1986) expanded the model given by (3.2) to permit the conditional
variance to be modeled as an autoregressive moving average (ARMA) model. The generalized
autoregressive conditional heteroskedasticity (GARCH) model is “a generalized ARCH model
in which the conditional variance of at instantt depends not only on the past squared
perturbations, but also the past conditional variances.” (Gujarati, 2005, p.440). The most
common typification is the GARCH(1,1) model, where the first number refers to the lag of the
autoregressive terms and the second refers to the number of lags in the model's moving
average component. GARCH,() models are specified as:

g =v.h (0.3)

! The identification of the ARMA (p,q) model used in this study followed the method presented by Box and
Jenkins (1970).
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whereg? =1 and

q p
h, :a0+zaigt2—i +Zﬁih—i : (0.4)
i=1 i=1
The constraints of this model arg>0, >0, £>0 and &Y ¢+ £i<1.

It is interesting to note that GARCH models are conditionally heteroskedastic, but
have a constant unconditional variance.

To specify GARCH models, it is necessary to assume the conditional distribution of
the error terms;. The literature usually employs the following distributions: i) normal; ii)
Student’st; and/or iii) generalized errors.

For a given distribution, the model is estimated by the maximum likelihood method.
For example, for a GARCH (1,1) model, with T observations, assuming a normal distribution
of the error terms, the log-likelihood is given by:

logL = - log@7) - log(h) = 3.(¥ - & - ¥.9)°/h (©.5)

Assuming a Studentidistribution implies:

__ 1 (m(v-2riv/i2)’) 13 _(v+] (Y-a-y.9°|
logL = 2Iog( F©+D/2) j Zzlllogh[ 5 Iog{1+ hW=-2) ]

(0.6)
wherev is the number of degrees of freedom aifg) is the usual Gamma function, i.e.,

r(y=[y e'dy

In this paper we use the estimations of the GARCH model considering the maximum
likelihood based on the normal distributfon

4. STOCHASTIC VOLATILITY (SV) MODEL

According to Morettin (2004, p.164) “the models of the ARCH family suppose that the
conditional variance depends on the past returns.” The stochastic volatility (MV) model, first
proposed by Taylor (1986), does not make this assumption. This model's premise is that the
present volatility depends on its past values, but that it is independent of the past returns.
Considering the price of the financial asset %), the discrete time stochastic volatility
model, presented by Harvey, Ruiz and Shephard (1994), can be written as:

Yt = ot éy, t=1,.... , T, (01)

wherey; represents the continuous return of the asset in period t, calculated InyS/ S.1),
and log? follows an AR(1) process. It is assumed thais a series of independent and
identically distributed (iid) random terms. Usually is specified to have a standard
distribution, so its variance?is unknown. Thus, for a normal distributiesf is equal to one,
while for at, distribution withv degrees of freedom, it ig(v-2). According to the convention
in the literature, one can write:

Vit = o0&t eO,5ht (02)

% We also tested the models based on the Student t distribution. The differences in the results were not significant.
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whereh, is the logarithmic volatility at andsis a constant scale factdéor which reason there
IS no need for a constant in the first-order stationary autoregressive term, according to the
following equation:

et = @ e+ e, pe~iid (0,6%,), |P|< 1 (0.3)
If & has finite variance, the varianceypis given by:
Var(yt)=0205e("§/2) : (0.4)

wheres2is the variance df.

One of the advantages of the discrete time stochastatility model is that it is
analogous to the continuous time models utilized in articles on options pricing, such as in Hull
and White (1987). The basic econometric properties of stochastic volatility models are
discussed in Taylor (1986, 1994), Shephard (1996), Ghysels, Harvey and Renault (1996) and
Jacquier, Polson and Rossi (1994). One of the key characteristics of this model is that it can be
linearized by applying the logarithm squared of the observations in (4.2):

log ¥ = h; + log &2 + log ¢ (0.5)

Afterward, the ternE(Iogef) is added to and subtracted from expression (4.5), to

obtain:

log V% = hi + loge 2 - E(log & ?) + log o %+ E(log & %) (0.6)
The representation of this expression can be written as:
log Y =k+h +&, 0.7

wherex=log 0% E(logs?) andé = log &2 - E(loge?).

As shown in Harvey, Ruiz and Shephard (1994), the state space form given by
equations (4.3) and (4.7) supply the basis for estimating the model's parameters by applying a
Kalman filter. Harvey, Ruiz and Shephard (1994) estimate the pararfietéds 02,7) 0(-1,1)
by maximizing the following quasi-likelihood function:

13 13
logLo(y16)=~7log2rr=> 3 log R - > W¢/F., (0.8)
t=1 t=1

wherey = (y1, Y»,...), Ut IS the projection of the error one step ahead for the best estimator of
log Y% and Fis the corresponding quadratic error.

The estimation carried out by the quasi-maximum likelihood method is consistent and
asymptotically follows a normal distribution. In the next section, we detail the characteristics
of the sample, with market data on the shares, used to apply the models presented.

5. DESCRIPTION OF THE DATA

To apply the volatility models to the calculation of the value at risk (VaR), we chose the
preferred shares of Petrobras (Petr4), given their liquidity and the number of trading days with
an ample window of data available. The data are daily (trading days) and cover the period
from January 2, 1995 to January 12, 2006, for a total of 2729 observations.
Alexander (2005, p. 90) reports that “in the GARCH model there is a dichotomy between
whether to have sufficient data for the estimates of the parameters to be stable, according to
the moving data window, or to have excessive data, so that the predictions do not
appropriately reflect current market conditions.” Our sample represents a window of eleven
years for applying the models, because we prioritized the stability of the parameters. Figure 2
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shows the behavior of the selected series of returns, highlighting events that caused high-
volatility clusters.

[Mexican crisis / Asian crisis / Russian crisis / Maximum variance / Septemiier 11
Brazilian presidential elections]

Figure 2: Continuous Returns of Petrobras PN
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We initially ran tests to identify the existence or not of a unit root and conditional
heteroskedasticity in the series, for adequate application of the models. According to the tests
conducted (augmented Dickey-Fuller, Phillips-Perron, KPSS and correlogram of squared
returns), it can be said that the series is stationary and heteroskedastic, which qualifies it for
application of the models analyzed (see the appendixes).

SPECIFICATION OF THE MODELS

In this section we specify the GARCH and SV models using the data sample mentioned
above. We specified the combined AR(1) and GARCH (1,1) model with the help of the
EVIEWS program. The AR(1) specified was:

y, = A32674,, +¢,
(0p1992
We followed the procedures below to estimate the complete GARCH model:

(0.1)

- We estimated the AR(1) model following the method suggested by Box and Jenkins
(1970);

- We verified the lag of the GARCH model by analyzing the autocorrelation and patrtial
autocorrelation functions of the squared residuals, resulting in specification of a
GARCH (1,1) model due to its parsimony and because models with more lags did not
converge satisfactorily;

- We applied Student'stest to the estimated parameters, rejecting the null hypothesis of
equality to zero;

h = @00024% Q1297272 + (B3784

( 000033 ( 0pO81B (0p1115
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- The model's constraints were satisfied, since the estimates of the parameters were
positive and the sum less than 1;

- We verified the absence of autocorrelation in the autocorrelation function by the Ljung
Box test;

- In the squared residuals tests, we verified the existence of autocorrelation (Ljung-Box),
and by the LM test we rejected the null hypothesis of the absence of autocorrelation in
the squared residuals;

- Using the Jacque-Bera normality test of the standardized residuals, we could verify in
the histogram that the distribution of the residuals is leptokurtic, rejecting the
hypothesis of normality.

According to these tests, the GARCH (1,1) model is suitable to estimate the conditional
volatility, and is thus used to calculate the VaR. The figure below contains the static
prediction one step ahead of the conditional variance based on the model specified.

Figure 3: Prediction of the conditional variance one step ahead
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Source: Prepared by the authors.

We specified the stochastic volatility (SV) model with the help of the STAMP
program. A practical problem arises in estimating this model, namely the existence of zeros in
the data series. Since the calculations are carried out in logarithms, the values of the returns
cannot be nil. We employed the following transformation, suggested by Breidt and Carriquiry
(1994), to get around this problem:

log yOlog( ¥+ c§—cg/(y +cs). t=1.2,...T, (0.3)
wheresj Is the sample variance ofayd cis a small number (in STAMP it is 0.02).

After carrying out this transformation, the model is estimated from the quasi-
maximum likelihood method via a Kalman filter, resulting in the following equations:
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log Y = k+hy +& > log Y = -8,5769 + h+&
hI+1 =0 ht+ Nt > h'(+1: 0,986323114' Nt

The model converges very strongly in 14 iterations, with the estimated standard
deviation ofét equal to 1.6888 and that mfequal to 0.13382. It is important to stress that the
Ljung-Box test applied to the residuals estimated by the model suggests there is no
autocorrelation. The value obtained in the autoregressive component, of 0.9863, is very high
and suggests there is an adjustment equivalence between the GARCH(1,1) and SV models.
Figure 4 shows the SV model for the Petrobras stock returns. Just as in the GARCH model,
there are volatility clusters coinciding with certain events, but the general volatility level of
the SV model appears more stable.

Figure 4: SV model for the Petrobras returns
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Source: Prepared by the authors.

Thus, for the case under analysis, either the GARCH) or the SV model are
adequate to estimate the VaR. In this sense, in the next section we apply backtesting to
compare the VaR based on the RiskMetrics (1999) methodology, which is widely used in the
market, with the VaR based on the GARCH and SV methods.

6. BACKTESTING

According to the RiskMetrics (1999) manual, backtesting compares the results
obtained with the measures generated by the model, to measure the efficiency of the model
used by financial institutions.

One of the methods used to evaluate the efficiency of models through backtesting is to
test for violations of the VaR limits, given by the number of excesses outside the confidence
interval.

This test uses the portfolio’s value marked to the market, counting the number of times
the portfolio’s returns exceeded the confidence interval stipulated for the VaR. The number
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violations can be differentiated into: upper limits, when the return exceeds the confidence
interval on the right side of the tail; and lower limits, when the return is more negative than
the critical return determined by the VaR. In this work we apply the violation test for the
lower limits, using the marked-to-the-market returns of the Petrobras shares for a window of
1500 observations. In this form, it is possible to compare the efficiency of the GARCH and
RiskMetrics models.

The next figure shows the Petrobras returns and the VaR calculated by the RiskMetrics
model, with volatility estimated by the exponential weighted moving average (EWMA), with
a decay factord =0.94. It can be seen that at the moments of greatest volatility, the Petrobras
returns exceeded the lower VaR limits.

Figure 5: VaR calculated by RiskMetricssEWMA
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Source: Prepared by the authors.

The next figure presents the VaR calculated by the GARCH (1,1) model and the limit
violations.

Figure 6 : VaR calculated by GARCH(1,1)
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Source: Prepared by the authors.

Figure 7 presents the VaR calculated by the SV model and its respective limit violations.
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Figure 7: VaR calculated by SV
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The results of the limits-violation testing show that in 4.54% of the observations, the
Petrobras returns exceed the VaR limits calculated with the GARCH model, while the
corresponding percentages for the SV model were 3.87% and for the EWMA model only
3.20%. It is important to point out that these results are only indicative for a sample, and by
comparing them it is not possible to conclude which is more efficient. But it is possible to
infer that the VaR calculated by the EWMA method, through the model proposed by
RiskMetrics, suffered fewer violations of the limits than the VaR calculated with the volatility
forecast by the GARCH (1,1) and SV methods. Nevertheless, it should be remembered that all
the models tested remained within the 5% significance level used in the VaR.

7. FINAL CONSIDERATIONS

This article analyzed three models used to estimate volatility: exponential weighted
moving average (EWMA), generalized autoregressive conditional heteroskedasticity
(GARCH) and stochastic volatility (SV). The volatility estimated by these models is the basis
for calculating the VaR, a metric widely used by financial institutions and companies with
exposures, to evaluate the risk of probable losses in their portfolios caused by asset price
variations. The VaR measure depends on the volatility, the time horizon and the confidence
interval for the continuous returns calculated through the logarithmic differences of the asset
prices.

For empirical analysis, we used a sample of prices of preferred Petrobras shares to
specify the generalized autoregressive conditional heteroskedasticity and the stochastic
volatility models. Both the GARCH and the SV models proved adequate to model the
volatility. Additionally, we carried out limits-violation backtesting for a VaR of 5% calculated
one step ahead, to compare the efficiency of the GARCH and SV models with that proposed
by RiskMetrics (EWMA). The results of these tests were not conclusive, but we verified that
the VaR calculated by EWMA suffered fewer violations that those calculated by the GARCH
and SV models, for a window of 1500 observations. The model suggested by RiskMetrics
(1999), which uses the volatility calculated by exponential smoothing, besides being favored
by the simplicity of its implementation, did not provide inferior results in the violation test in
comparison with the more sophisticated volatility estimation models.

For subsequent works, we suggest the use of portfolios with more than one asset, or
verification of the models for longer projection horizons than one day.
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APPENDIXES
i) Autocorrelation of the series

The correlogram of the stock’s returns is presented below:
Included ocbservations: 2729

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
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From the analysis of the ACF and PACF, it is not very clear which model the behavior of these functions
represents. However, a significant reduction can be perceived both in the ACF and PACF in the series’ first lag.
In this context, the AR(1), MA(1) and ARMA(1,1) are estimated and the respective information criteria are
analyzed to select the model to be estimated with GARCH:

ARMA(1,1) Model

Variable Coefficient  Std. Error  t-Statistic Prob.
AR(1) -0.058242  0.153047 -0.380551 0.7036
MA(1) 0.179051  0.150903 1.186528 0.2355
R-squared 0.012326 Mean dependent var 0.001218
Adjusted R-squared 0.011964S.D. dependent var 0.028971
S.E. of regression 0.028797 Akaike info criterion -4.256375
Sum squared resid 2.260544Schwarz criterion -4.252041
Log likelihood 5807.696 Durbin-Watson stat 2.003717
Inverted AR Roots -.06
Inverted MA Roots -.18
AR (1) Model
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Variable Coefficient  Std. Error t-Statistic Prob.
AR(1) 0.114847 0.019009 6.041861 0.0000
R-squared 0.011464 Mean dependent var 0.001218
Adjusted R-squared 0.011464S.D. dependent var 0.028971
S.E. of regression 0.028804 Akaike info criterion -4.256236
Sum squared resid 2.262518Schwarz criterion -4.254069
Log likelihood 5806.505 Durbin-Watson stat 1.989847
Inverted AR Roots A1
MA (1) Model
Variable Coefficient  Std. Error  t-Statistic Prob.
MA(1) 0.122887 0.019000 6.467663  0.0000
R-squared 0.012546 Mean dependent var 0.001196
Adjusted R-squared 0.012546S.D. dependent var 0.028988
S.E. of regression 0.028806 Akaike info criterion -4.256124
Sum squared resid 2.263601Schwarz criterion -4.253957
Log likelihood 5808.481 Durbin-Watson stat 2.004299
Inverted MA Roots =12

Based on the significance of the estimated coefficients, as well as the information criteria of the models, we chose
to use the AR(1) specification for the series.

i) Analysis of the series for adjustment of a GARCH model
The correlogram of the stock’s squared returns is presented below:
Included ohservations: 2729

Autocorrelation Partial Correlation AC PAC Q-5tat Prob
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i} 22 0065 0.011 18353 0.000
13 23 0100 0053 18626 0000
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[} 26 0,097 0.034 1921.0 0.000
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The squared return series presents strong autocorrelation, which provides indications that the generalized
autoregressive conditional heteroskedasticity model can be used for the best modeling of the series. The graph of
the squared return series shows characteristic clusters of the GARCH model:
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iii) Unit root tests of the series:

ADF Test — Model with intercept and trend
Null Hypothesis: PETR has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 2 (Automatic based on SIC, MAXLAG=27)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -31.79295 0.0000
Test critical values: 1% level -3.961409
5% level -3.411456
10% level -3.127584
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(PETR)
Method: Least Squares
Sample (adjusted): 4 2729
Included observations: 2726 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
PETR(-1) -0.988080 0.031079  -31.79295 0.0000
D(PETR(-1)) 0.103309 0.025471 4.055912 0.0001
D(PETR(-2)) 0.059656 0.019120 3.120107 0.0018
C 0.000799 0.001102 0.725248 0.4684
@TREND(1) 3.02E-07 6.99E-07 0.432184 0.6656
R-squared 0.447128 Mean dependent var -8.18E-07
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Adjusted R-squared 0.446315S.D. dependent var 0.038593
S.E. of regression 0.028717 Akaike info criterion -4.260837
Sum squared resid 2.243884Schwarz criterion -4.249996
Log likelihood 5812.521 F-statistic 550.1436
Durbin-Watson stat 1.999082 Prob(F-statistic) 0.000000

Conclusion: By the augmented Dickey-Fuller (ADF) unit root test, the null hypothesis that there is a unit
root in the stock’s return series cannot be accepted at 1%, 5% and 10% significance. The conclusions are
the same for the model without intercept and trend and with intercept.

PP Test — Model with intercept and trend
Null Hypothesis: PETR has a unit root
Exogenous: Constant, Linear Trend
Bandwidth: 11 (Newey-West using Bartlett kernel)

Adj. t-Stat Prob.*

Phillips-Perron test statistic -46.33250 0.0000
Test critical values: 1% level -3.961407

5% level -3.411454

10% level -3.127583

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000828
HAC corrected variance (Bartlett kernel) 0.000664

Phillips-Perron Test Equation

Dependent Variable: D(PETR)

Method: Least Squares

Sample (adjusted): 2 2729

Included observations: 2728 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
PETR(-1) -0.886767 0.019019  -46.62638 0.0000
C 0.000693 0.001103 0.628217 0.5299
@TREND(1) 2.86E-07 7.00E-07 0.408488 0.6829
R-squared 0.443767 Mean dependent var 2.46E-05
Adjusted R-squared 0.443358S.D. dependent var 0.038593
S.E. of regression 0.028793 Akaike info criterion -4.256243
Sum squared resid 2.259185Schwarz criterion -4.249743
Log likelihood 5808.516 F-statistic 1087.012
Durbin-Watson stat 1.989712 Prob(F-statistic) 0.000000

Conclusion: By the Phillips-Perron (PP) unit root test, the null hypothesis that there is a unit root in the
stock’s return series cannot be accepted at 1%, 5% and 10% significance. The conclusions are the same
for the model without intercept and trend and with intercept.
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iv) Stationarity test

In order to confirm the stationarity of the series, identified in the unit root tests, we applied the KPSS test,
reported below:

KPSS Test— Model with intercept and trend
Null Hypothesis: PETR is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 8 (Newey-West using Bartlett kernel)

LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.040889
Asymptotic critical values*: 1% level 0.216000
5% level 0.146000
10% level 0.119000
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)
Residual variance (no correction) 0.000840
HAC corrected variance (Bartlett kernel) 0.000815
KPSS Test Equation
Dependent Variable: PETR
Method: Least Squares
Sample: 1 2729
Included observations: 2729
Variable Coefficient Std. Error t-Statistic Prob.
C 0.000683 0.001110 0.615912 0.5380
@TREND(1) 3.76E-07 7.04E-07 0.533665 0.5936
R-squared 0.000104 Mean dependent var 0.001196
Adjusted R-squared -0.000262 S.D. dependent var 0.028988
S.E. of regression 0.028992 Akaike info criterion -4.242870
Sum squared resid 2.292122Schwarz criterion -4.238537
Log likelihood 5791.396 F-statistic 0.284798
Durbin-Watson stat 1.771974 Prob(F-statistic) 0.593617

Conclusion: By the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test, the null hypothesis that
there is a unit root in the stock’s return series cannot be rejected at 1%, 5% and 10% significance. The
conclusion is the same for the model with intercept.

v) GARCH model
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Dependent Variable: PETR

Method: ML - ARCH (Marquardt)

Sample(adjusted): 2 2729

Included observations: 2728 after adjusting endpoints
Convergence achieved after 15 iterations

Variance backcast: OFF

Coefficient Std. Error z-Statistic Prob.

AR(1) 0.132674  0.019922  6.659689  0.0000
Variance Equation
C 2.47E-05 3.80E-06 6.517232  0.0000
ARCH(1) 0.129720 0.008130  15.95504  0.0000
GARCH(1) 0.837840 0.011150 75.13943 0.0000
R-squared 0.011145 Mean dependent var 0.001218
Adjusted R-squared 0.010056S.D. dependent var 0.028971
S.E. of regression 0.028825 Akaike info criterion -4.600617
Sum squared resid 2.263248Schwarz criterion -4.591949
Log likelihood 6279.241 Durbin-Watson stat 2.023680
Inverted AR Roots 13

LM Test of the residuals

ARCH Test:
F-statistic 5.419314 Probability 0.004478
Obs*R-squared 10.80755 Probability 0.004500

Test Equation:

Dependent Variable: STD_RESID"2

Method: Least Squares

Sample(adjusted): 4 2729

Included observations: 2726 after adjusting endpoints

Variable Coefficient  Std. Error t-Statistic Prob.

C 0.938109  0.045594  20.57535 0.0000
STD_RESID"2(-1) 0.001367 0.019126  0.071459  0.9430
STD_RESID"2(-2) 0.062959 0.019129  3.291311  0.0010

R-squared 0.003965 Mean dependent var 1.002573
Adjusted R-squared 0.003233S.D. dependent var 1.917730
S.E. of regression 1.914627 Akaike info criterion 4.138023
Sum squared resid 9981.968Schwarz criterion 4.144528
Log likelihood -5637.125 F-statistic 5.419314
Durbin-Watson stat 1.995807 Prob(F-statistic) 0.004478

Normality Test of the Residuals

600
M Series: Standardized Residuals
5004 Sample 2 2729
Observations 2728
400 — Mean 0.046257
Median 0.038150
3004 Maximum 5.125893
Minimum -6.604058
Std. Dev. 1.000331
200+ Skewness -0.175047
Kurtosis 4.695533
1004
Jarque-Bera  340.7044
Probability 0.000000
0 T I L T T
6 -4 -2 0 2 4
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vi) Stochastic volatility (SV) model
Complete results:

Method of estimation is maximum likelihood
The present sample is: 0 to 2728

MaxLik initialising...
it 1 f= -0.61823 e0= 0.00000 step= 1.00000

MaxLik iterating...

it 4 f= -0.56087 df= 0.00480 el= 0.00347 e2= 0.11477 step=
it 9 f= -0.55836 df= 0.00009 el= 0.00021 e2= 0.03684 step=
it 14 f= -0.55835 df= 0.00000 el= 0.00000 e2= 0.00000 step=

Equation 1.
SVpetr = Level + AR(1) + Irregular

Estimation report
Model with 3 parameters ( 1 restrictions).

Parameter estimation sampleis 0. 1-2728. 1. (T = 2729).

Log-likelihood kernel is -0.5583489.
Very strong convergence in 14 iterations.
(likelihood cvg 1.789563e-015
gradient cvg 1.219025e-008
parameter cvg 1.623527e-010)

Eq 1 : Diagnostic summary report.

Estimation sample is 0.1 -2728. 1. (T = 2729, n = 2728).
Log-Likelihood is -1523.73 (-2 LogL = 3047.47).
Prediction error variance is 3.04931

Summary statistics
SVpetr
Std.Error 1.7462
Normality 114.33
H(909) 0.93420
r(1) -0.0018508
r(39) 0.011165

DW 1.9980
Q(39,37)  38.960
RA2 0.11195

Eq 1 : Estimated variances of disturbances.

Component SVpetr (g-ratio)
Irr 2.8520 (11.0000)
Arl 0.017907 ( 0.0063)

Eq 1 : Estimated standard deviations of disturbances.

Component SVpetr (g-ratio)

Irr 1.6888 ( 1.0000)

Arl 0.13382 ( 0.0792)

Eq 1 : Estimated autoregressive coefficitR, Braz.
Bus. Rev. (Engl. ed., Online),
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The AR(1) rho coefficient is 0.986323.
Eq 1: Estimated coefficients of final state vector.

Variable  Coefficient R.m.s.e. t-value
Lvl -8.5769 0.18600 -46.113 [ 0.0000]
Arl -0.76884 0.45764

Normality test for Residual SVpetr
Sample Size 2728

Mean -0.053013
Std.Devn. 0.998594
Skewness -0.257566
Excess Kurtosis -0.580191
Minimum -3.280796
Maximum 3.113678

Skewness Chi*2(1) 30.163 [0.0000]
Kurtosis Chi*2(1) 38.263 [0.0000]

Normal-BS Chi*2(2) 68.425 [0.0000]
Normal-DH Chi*2(2) 114.33 [0.0000]

Goodness-of-fit results for Residual SVpetr

Prediction error variance (p.e.v) 3.049310
Prediction error mean deviation (m.d) 2.511845
Ratio p.e.v. / m.d in squares 0.938204
Coefficient of determination R2 0.111953

... based on differences RD2 0.466639
Information criterion of Akaike AIC 1.117114
... of Schwartz (Bayes) BIC 1.123613

Serial correlation statistics for Residual SVpetr.
Durbin-Watson test is 1.99805.
Asymptotic deviation for correlation is 0.019146.
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Lag dF SerCort BoxLjung ProbChid(dEF)

1 0 -00019 27 24 00132 259750 [0.3544)
2 0 00213 28 25 00177 262430 [0.383E]
3 0 00197 29 26 00319 294443 [0.2825]
4 1 -0.0394 65441 [00105] 30 27 00433 348198 [0.14335]
5 2 00128 49890 [00304] 31 28 00167 3535884 [0.1534]
6 3 -0.0149 75047 [00552] 32 20 00074 357379 [0.1813]
74 00012 75987 [0.1074] 33 30 00176 365987 [0.1891]
& 5 -0.0104 7TER32 [01622] 34 31 00230 3820570 [0.1790]
o & 00103 F1229 [02250] 35 32 00082 332765 [0.2059]
10 7 00271 101904 [0.1780] 36 33 00097 385380 [0.2333]
11 & 00027 102104 [02506] 37 34 00008 3835398 [0.2714]
12 % -0.0141 109238 [02810] 38 35 00052 386145 [0.3094]
13 10 0.0263 128205 [02339] 39 36 00112 389397 [0.3380]
14 11 -0.0097 13.0774 [02883] 40 37 00180 396695 [0.3519]
15 12 -0.0182 139897 [03014] 41 38 001467 404403 [0.3631]
16 13 -0.0045 14.0456 [03706] 42 39 00035 405251 [0.4029]
17 14 -0.0191 150495 [03748] 43 40 00124 409534 [0.4285]
18 15 -0.0135 155495 [04126] 44 41 00001 409535 [0.4727]
19 16 -0.0163 162809 [0.4335] 45 42 00336 440926 [0.3837]
20 17 -0.0024 16.2973 [0.5029] 46 43 00027 441124 [0.4244]
21 18 -0.0274 183652 [045319] 47 44 00005 441131 [0.4869]
22 19 00151 189955 [04571] 4% 45 00148 447190 [ 0.483E]
23 20 00163 197278 [04751] 49 46 002359 465891 [0.4480]
24 21 -0.0229 21.17322 [0.4485] 50 47 00122 470029 [0.4724]
43 234 -0.0102 21.4600 [0.4925]

26 23 -0.0361 250574 [03473]

vii) Programming routine in VBA for calculation of the conditional variance of the exponential decay model:

Function ewma(lambda, As Range returns)
i=1
lambda2 = 1
ewma =0
Do While lambda2 > 0.00001
ewma = ewma + returns (i, 1) » 2 * lambda2
lambda2 = lambda2 * lambda
i=i+1
Loop
ewma = ewma * (1 - lambda)
End Function
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